
John Coryat, USNaviguide LLC, August 3rd, 2010
Companion website: http://www.usnaviguide.com/ws-2008-08

	 A lot of custom tile layer requirements can be met using image cutting
utilities, they are fast and efficient yet fail when image size becomes too large for
the average system to handle. Once this point is reached, the best solution is to
create each tile as an individual image instead.

	 This article will focus
on one implementation,
icon images embedded into
a tile layer to simulate
markers.

	 G o o g l e u s e s t h i s
t e c h n o l o g y i n t h e i r
standard search results,
note in this image how the
primary results are lettered
m a r k e r s w h i l e t h e
secondary results are little
red dots.

	 T h e s e c o n d a r y
r e s u l t s , w h i l e a l s o
selectable to reveal the
details of that point, are in
fact not marker objects but
part of a tile layer. Using
this method, many more
results can be displayed
then if marker objects alone
were used.

 The main advantage of using a separate layer to display simulated markers
centers on the ability to show more markers than if JavaScript objects were
solely used. In addition, using a tile layer is fast and efficient, doesn’t reveal data
in the way markers do and since it’s created on the server, more processing can
be done like clustering, changing the icon depending on the zoom along with
others. Some disadvantages include increased bandwidth to transmit tile images
and some delay in displaying the infowindow when the marker is clicked.

Simulating Markers with a Tile Layer

1

http://www.usnaviguide.com/ws-2008-08
http://www.usnaviguide.com/ws-2008-08

 In this example, the tile
layer shows volcanoes from
t h e S m i t h s o n i a n G l o b a l
Volcanism Program. There
are about 1,300 volcanoes in
the database and it requires
over 4,000 tiles to display
the entire world at zoom
levels three to ten. At zoom
level seven, the icon changes
from a small circle to the
m o r e e l a b o r a t e vo l c a n o
i m a g e . T h i s i s e a s i l y
accomplished using a tile
layer, JavaScript marker objects would be quite a bit more difficult. We’ll be using
this example (link: http://www.usnaviguide.com/ws-2010-08/volcano.htm)
throughout this article.

Useful Perl Module

 In order to do many of
the calculation involved with
transforming points into
drawn tiles, we’re providing a
handy Perl module that
c a l c u l a t e s j u s t a b o u t
everything that might be
needed in the process. Two
helpful functions include
converting coordinates into
pixels, and calculating a tile
name from a pixel location
and zoom.

Calculating Tiles

	 The first step in constructing a tile layer is figuring out what tiles will be
required. One method to do this is to create a database table that has zoom, X and
Y tile names and the X and Y coordinates of the top left position of the icon
image. The top left position of the icon is what will be needed to place it on the
tile.

Simulating Markers with a Tile Layer

2

USNaviguide_Google_Tiles.pm

Calculate:
•All tiles for a bounding box and zoom
•Factors needed (Zoom, Tilesize)
•Tile features from a tile name and zoom
•Tile name to pixel
•Coordinate to pixel
•Pixel to coordinate
•Tile name from a pixel location and zoom

http://www.usnaviguide.com/ws-2010-08/volcano.htm
http://www.usnaviguide.com/ws-2010-08/volcano.htm

Icons can overlap Tiles

	 A complication arrises
when trying to merge the icon
image into the tile, often, icon
images overlap from one tile to
another. A point will always
reside on a single tile (per
zoom), however, once a point
becomes an icon image, if the
point is close to the edge of the
tile, the associated icon image
may cross tile boundaries. This
has to be handled in order to maintain a seamless view when the map is
displayed.

Overlapping Problem

	 Here we see a worst case
scenario where an icon image
has crossed into four tiles. In
order to draw a set of perfect
tiles, either the icon image has
to be partially drawn on four
different tiles or the point has
to be moved slightly to allow
the image to fit on the tile.

 The two methods for
handing this overlap I call
“Fudging” and “Exact.”

Simulating Markers with a Tile Layer

3

Fudging Method

 In the “Fudging” method,
the point is shifted enough so
that the icon image resides
completely in one tile. This
method works well when the
icon is relatively small, there
are a limited number of points,
the points represent an areal
feature such as a city, lake,
park or other feature and
where shifting the point a few
pixels won’t detract from the
accuracy of the map. This
method allows for faster tile
drawing and the process is
simplified.

 “Fudging” fails when
there’s a good possibility two
points will be “fudged” to
occupy the same coordinate, if
the point represents a small
feature like a building, transit
station or where even a slight
shift will detract from the
accuracy of the map. In those
cases, using the “Exact”
method is the best bet.

Exact Method

 W i t h t h e “ E x a c t ”
method, the tile locations of
each corner of the icon image
are calculated and stored,
along with the top left hand
corner of the image. When tile
drawing, icons with overlap
will have just a piece of the
image but when the tiles are
assembled the resulting image
will look seamless.

Simulating Markers with a Tile Layer

4

Drawing Tiles

 Once the points and tiles
required have been calculated,
i t ’s t ime to draw. Select
“distinct” rows by the tile
name, since there could be
many rows with duplicate tile
names as a result of the
calculations done previously.
Cycle through the table ,
selecting all points for each tile
and merge the icon images onto
the tile using the top left
corner pixel location, once all
points are processed, the tile
can be created.

 It will be advantageous to separate zoom levels into their own directory.
This will reduce the time it takes the server to find a tile and deliver it to the
client. Since a “sparse” tile set is created, or put another way, only tiles with data
are drawn, there will occasionally be a request for a tile that doesn’t exist,
resulting in a server 404 message. The API will handle these errors correctly and
display a blank tile, it will be faster and more efficient to handle these missing
tiles in another manner.

Simulating Marker Clicks

 The final step in the
simulation of markers is to
handle the click event as if it
was a marker. The usual result
of a marker click reveals the
“infoWindow” to the user. The
same can be done by using
AJAX. A click listener sends
the server a message with the
zoom level and coordinate, the
server selects from the point
table the closest point, which is
examined to determine if the
click was within a reasonable range of pixels to be considered a hit and not just a
random click. This is done using a relatively simple distance formula, since the
values are all pixels, the curvature of the Earth can be ignored. The results are
transmitted back the the client as XML and the client displays the infoWindow,
just as a marker click with a JavaScript object.

Simulating Markers with a Tile Layer

5

Drawing Tile Steps:

1. Select list of tiles required

2. Gather points for the tile

3. Merge icon images into tile

4. Output tile

Creates a “sparse” tile set

Simulating Marker Clicks

•Client sends coordinate and zoom

•Server selects the closest point to the click

•Server checks tolerance

•Server sends XML to client

•Client displays results

Using a Tile Server

 A “tile server” handles
the image request from the
client, instead of the default file
handler. The best reason is to
avoid server “404 not found”
errors. 404 errors take more
effort for the server to handle
as an error message has to be
logged and the error reporting to the client consumes more bandwidth than a
blank tile. The tile server checks for the existence of the image file and if not
found, returns a blank image instead, bypassing the 404 error.

	 There are other advantages to using a tile server, such as being able to hide
the tile directory from public access and allowing a security system to prevent
unauthorized web sites from using tile images.

Resources

	 The following resources are available for download. Please feel free to use
any of them as a project base, convert into any language and modify any way that
makes sense.

Simulating Markers with a Tile Layer

6

•tiles.pl - Calculate and draw tiles using the “exact” method

•volcano.htm - v3 page used in this presentation

•volcano.pl - Click handler for volcano.htm

•tileserver.pl - Tile server used in this presentation

•volcano.sql - PostgreSQL dump for data used in this presentation

•USNaviguide_Google_Tiles.pm - Calculate tile factors (perl module)

•ws-2010-08-article.pdf - This article

•download.zip - All the above in a zipped format

All the above materials are available under the Apache license.

Link: http://www.usnaviguide.com/ws-2010-08

http://www.usnaviguide.com/ws-2010-08
http://www.usnaviguide.com/ws-2010-08

